
XII — Programming Introduction

XII.1 Programming language

A programming language is an interface between a human and a computer which enables to

give a list of instructions to it. The instructions are written in a text file, called source file,

through a text editor (do not be confused with a word processing program). This source file

is read and translated into a machine language by the computer. The computer can then

run it.

Languages have been improved since the first programming language (Assembly lan-

guage) which was quite hard to understand. Nowdays, modern languages enable to use

functions and are, for most of them, object-oriented.

Languages can be interpreted or compiled:

— Interpreted language: instructions are read, interpreted into a machine language and

run on the fly. The advantage is the ease of use, the drawback is the slow program

execution speed.

— Compiled language: instructions are read, and translated into a machine language

once by a compiler in order to create an executable file. The advantage is the fast

program execution speed, the drawback is that the code has to be compiled after each

modification. An other advantage is that one person can give the executable file to an

other one while keeping secret the source code.



2 Programming Introduction

# import the s c i e n t i f i c l i b r a r y " s c ipy "

import s c ipy

print ( "My␣ f i r s t ␣Python␣program " )

a=3.14

b=2.78

i=3

w=1+1.0 j

print ( " a␣ i s ␣a␣ r e a l ␣ : ␣ " , a )

print ( "b␣ i s ␣a␣ r e a l ␣ : ␣ " ,b )

print ( " i ␣ i s ␣an␣ i n t e g e r ␣ : ␣ " , i )

print ( "w␣ i s ␣a␣complex␣ : ␣ " ,w)

c=a∗b

print ( " a∗b␣=␣ : ␣ " , c )

c=sc ipy . s q r t ( a )

print ( " square ␣ root ␣ o f ␣a␣=␣ : ␣ " , c )

i=i+1

print ( " l e t ’ s ␣add␣1␣ to ␣ i ␣ : ␣ " , i )

i=i+1

print ( " l e t ’ s ␣add␣an␣ other ␣1␣ to ␣ i ␣ : ␣ " , i )

Figure XII.1 – First Python program

XII.2 Python language

XII.2.1 Python basis and installation

Python language is an object-oriented interpreted language. Several scientific libraries are

available. These libraries are compiled, which is a good point for the speed-up of the program

execution speed when they are used within a finite element program.

A first Python program (3.4 version) is proposed on figure XII.1. The text indentation

is very important with Python, for this example, which is just a list of instructions with

neither loop nor condition, all the lines start at the first column. The text after the # letter

is not read by Python, this is comment. The scientific library scipy is firstly called in

the memory. We write a text string on the screen, then we give real values to the a and

b variables (float type). The memory allocation as well as the variable declaration are

automatically done by Python, which is convenient but slows down the program execution

speed. We give an integer value to the i variable (int type). If we would have given the value

3.0, this variable would have been a float type. We give a complex value to the w variable

(complex type). We print on the screen these 3 variables, then we do a few computations

using the square root function sqrt which is in the scipy library. Finally, we increment

i by 1 twice. The sign = in the program is interpreted as a variable affectation, in other

Finite element method for structures - A. Legay - Cnam, Paris



XII.2 Python language 3

My first Python program

a is a real : 3.14

b is a real : 2.78

i is an integer : 3

w is a complex : (1+1j)

a*b = : 8.7292

square root of a = : 1.77200451467

let’s add 1 to i : 4

let’s add an other 1 to i : 5

Figure XII.2 – Screen result of the first Python program

words, the instruction i=i+1 adds 1 to i: it is not an equation with one unknown to be

solved. The screen output of this first program is given on figure XII.2.

The installation of Python is quite easy:

— With the Ubuntu OS: via synaptic, install: python3.4, idle-python3.4, python-scipy,

python-numpy and maybe a few others packages if necessary...

— With the Windows and Mac OS: install the package Anaconda which include Python,

the scientific libraries as well as a text editor.

In order to write the program file, the easiest way is to use an integrated development

environment (IDE): for instance idle-python or spyder (comes with Anaconda) but there

are others. Within the IDE, a window appears, then one can open a file (or create a new

one), (file/open) and then run it with run.

Exercise XII.1 Write a Python program which computes the displacement of a clamped-free bending

beam from its length L, its Young modulus E, its second moment of area of the cross section I and the

applied load F .

E, I F L
3

3EI

F

L
�

XII.2.2 Conditions and loops with Python

The presented program on figure XII.3 is a simple guessing game. The player has to find the

hidden number i (here 6). The player makes a guess, we say to him if the number is greater

or less than his guess. The player has only 3 tries. There is a while loop which ends if the

j variable becomes greater than 3. There is a first level of indentation for the while loop

instructions, and then a second level of indentation in each if condition. There is no end

with Python, the end of a loop or a condition is indicated by the end of the indentation.

The mandatory use of indentation gives readable programs.

The program on figure XII.4 makes the user revising the multiplication table and gives

him a mark out of 20. The random library enables to choose 2 numbers randomly between

Finite element method for structures - A. Legay - Cnam, Paris



4 Programming Introduction

print ( " Guess␣my␣number , ␣you␣have␣3␣ t r i e s . " )

i=6 # number to d i s c ov e r

j=1 # t r i e s counter

while ( j <= 3 ) :

print ( "Try␣number␣ " , j )

print ( " Guess␣a␣number : " )

k = int ( input ( ) )

i f ( k==i ) :

print ( " Congratu la t ions " )

j=99

i f ( k<i ) :

print ( "My␣number␣ i s ␣ g r e a t e r ␣than␣you␣ guess " )

i f ( k>i ) :

print ( "My␣number␣ i s ␣ l e s s ␣ than␣your␣ guess " )

j = j+1

i f ( j ==4):

print ( "You␣have␣not␣ found␣my␣number , ␣my␣number␣was␣ " , i )

Figure XII.3 – Guessing game with Python

import random

print ( " Mu l t i p l i c a t i o n ␣ tab l e . " )

k=0 # Count o f good answers

for i in range ( 2 0 ) :

a=int ( random . uniform (2 , 1 0 ) )

b=int ( random . uniform (2 , 1 0 ) )

print ( a , " ∗ " ,b , " ␣=" )

c = int ( input ( ’ ? ’ ) )

i f c==(a∗b ) :

print ( "Yes " )

k=k+1

else :

print ( "No" )

print ( " number␣ o f ␣good␣answers ␣out␣ o f ␣ 20 : ␣ " , k )

Figure XII.4 – Multiplication table with Python

Finite element method for structures - A. Legay - Cnam, Paris



XII.2 Python language 5

bc

bc

bc

bc
f

f(a) > 0

f(c)

f(b) < 0

a bc = a+b

2

f(x) = 0

x

Figure XII.5 – Root-finding algorithm with the bisection method

0 and 10: the int function converts the random real into an integer. We print out on the

screen the 2 integers a and b. The user enters a proposition, we store it in the c variable.

We compare it to the good answer. If it is good, we print out Yes and add 1 to the counter

k, otherwise, we print out No. The counter k has to be initialized to 0 at the beginning of

the program. At the end, we print out the number of good answers.

Exercise XII.2 Write a Python program which computes the Syracuse sequence from a given integer.

This "well-known" sequence can be obtained as the following operation on an arbitrary positive integer:

— If the number is even, divide it by two.

— If the number is odd, triple it and add one.

This operation is repeated on the result. The Syracuse conjecture is that, from any given positive integer,

the sequence always reaches 1. The x%y Python instruction can be used: it gives the remainder of the

division of x by y. �

XII.2.3 Functions with Python

A Python function has a name, inputs, outputs, instructions and local variables. It can

eventually call other functions. In order to illustrate how to create a function with Python,

we write a program that find the root of a 1-variable mathematical function by the bisection

method. The algorithm is as following (see figure XII.5):

Initialization de a et b

While b− a >criterion do

c = a+b

2

If f(a)× f(c) > 0 then a← c else b← c

Print c

Print number of iterations

The corresponding Python program is given on figure XII.6. The mathematical function

for which we want to find the root is in the Python function named myfunction. The input

is x, the output is value. Here, we choose to look for the root of the cosine function. The

main program follows the root-finding algorithm using the bisection method, it calls the

Finite element method for structures - A. Legay - Cnam, Paris



6 Programming Introduction

def myfunction (x ) :

import s c ipy

va lue = sc ipy . cos ( x )

return va lue

print ( " Root␣ o f ␣ c o s i n e ␣between␣0␣and␣ 3 . " )

a=0.0

b=3.0

j=1 # Counter o f i t e r a t i o n s

while ( ( abs (a−b))>1e−8):

j=j+1

ya=myfunction ( a )

c=0.5∗(a+b)

yc=myfunction ( c )

i f ( ( ya∗yc ) >0 .0) :

a=c

else :

b=c

print ( "Number␣ o f ␣ i t e r a t i o n s : ␣ " , j )

print ( " Root␣ o f ␣ the ␣ func t i on : ␣ " , c )

Figure XII.6 – Root-finding algorithm with the bisection method using Python

function myfynction several times. In order to change the mathematical function, one has

just to change its expression in myfunction.

Exercise XII.3 Write a Python program that computes the integral of a function by using the rectangle

rule, for instance cos x, from a to b for a given n number of rectangles. �

XII.2.4 Matrix operations with Python

The scientific librairy scipy enables to do matrix operations.

In the case of small matrices, such as elemental stiffness matrices (up to 100×100), they

are completely stored using the array type. Figure XII.7 presents an example of matrix

multiplication. Matrices are written row by row. The dot function multiplies matrices, all

the other classical operations on matrices are possible.

In the case of large matrices, such as global stiffness matrices (up to 1,000,000×1,000,000),

they are stored as sparse matrices. Each non-zero term is stored by associating its row and

column indices. For instance, we want to use the sparse storage to store the following matrix:



















4.6 6.9 0 0 0

1.5 1 3.8 9.2 0

0 3.0 2 0 0

0 9 0 5.5 7

0 0 0 7 8



















We store the matrix value terms in the array V (reals), the corresponding row indexes are

Finite element method for structures - A. Legay - Cnam, Paris



XII.2 Python language 7

import s c ipy

A=sc ipy . a r ray ( [ [ 1 . 1 , 0 . 0 ] ,

[ 8 . 7 , 0 . 0 ] ,

[ 0 . 0 , 2 . 6 ] ] )

B=sc ipy . a r ray ( [ [ 6 . 1 , 4 . 5 , 0 . 0 , 0 . 0 ] ,

[ 0 . 0 , 5 . 5 , 3 . 7 , 1 . 9 ] ] )

C=sc ipy . dot (A,B)

print C

Figure XII.7 – Matrix declaration and matrix operations with Python

import s c ipy

import s c ipy . spa r s e

V=sc ipy . a r ray ( [ 4 . 6 , 1 . 0 , 2 . 0 , 5 . 5 , 8 . 0 , 6 . 9 , 1 . 5

, 3 . 8 , 3 . 0 , 9 . 2 , 9 . 0 , 7 . 0 , 7 . 0 ] )

I=sc ipy . a r ray ( [ 0 , 1 , 2 , 3 , 4 , 0 , 1 , 1 , 2 , 1 , 3 , 3 , 4 ] )

J=sc ipy . a r ray ( [ 0 , 1 , 2 , 3 , 4 , 1 , 0 , 2 , 1 , 3 , 1 , 4 , 3 ] )

A=sc ipy . spa r s e . csc_matrix ( (V, ( I , J ) ) , shape=(5 ,5) )

print A. todense ( )

Figure XII.8 – Sparse matrix declaration with Python

stored in the array I (integers) while the corresponding column indexes are stored in the

array J (integers). Pointers with Python start at 0, that means that the first row of a matrix

is the row number 0. We can first store diagonal terms, then the others, the order has no

importance:

V = [ 4.6 1 2 5.5 8 6.9 1.5 3.8 3.0 9.2 9 7 7 ]

I = [ 0 1 2 3 4 0 1 1 2 1 3 3 4 ]

J = [ 0 1 2 3 4 1 0 2 1 3 1 4 3 ]

The corresponding Python program is given on figure XII.8.

The advantage of the matrix sparse storage is that the same row and column indexes

can be repeated several times, the values are summed up automatically. For instance, we

want to assemble the 2 following 2×2 matrices into a 3×3 matrix:

[

10 −10

−10 10

]

Finite element method for structures - A. Legay - Cnam, Paris



8 Programming Introduction

import s c ipy

import s c ipy . spa r s e

V=sc ipy . a r ray ([10 ,−10 ,−10 ,10 ,20 ,−20 ,−20 ,20])

I=sc ipy . a r ray ( [ 0 , 0 , 1 , 1 , 1 , 1 , 2 , 2 ] )

J=sc ipy . a r ray ( [ 0 , 1 , 0 , 1 , 1 , 2 , 1 , 2 ] )

A=sc ipy . spa r s e . csc_matrix ( (V, ( I , J ) ) , shape=(3 ,3) )

print A. todense ( )

Figure XII.9 – Sparse matrix assembly with Python

on the rows and the columns [ 0,1 ], and
[

20 −20

−20 20

]

on the rows and the columns [ 1,2 ]. The expected result is:








10 −10 0

−10 10 + 20 −20

0 −20 20









=









10 −10 0

−10 30 −20

0 −20 20









The storage can be done by using the 3 following arrays:

V = [ 10 −10 −10 10 20 −20 −20 20 ]

I = [ 0 0 1 1 1 1 2 2 ]

J = [ 0 1 0 1 1 2 1 2 ]

where 10 and 20 are stored separately at the same position [1,1]. The corresponding Python

program is given on figure XII.9.

Exercise XII.4 Write a program which assembles automatically the matrix

[

10 −10

−10 10

]

into a 5×5 matrix on the following rows and columns indexes: [0,1],[1,2],[2,3],[0,3],[3,4]. One can advan-

tageously use a connectivity table element such that

elements=scipy.array([[0,1],[1,2],[2,3],[0,3],[3,4]]). �

XII.3 Fortran language

XII.3.1 Fortran basis and installation

The Fortran language is a compiled language. It is a relatively old language which has been

used for many years by scientists: almost all the finite element softwares are written in

Fortran.

A first example of a Fortran program is given on figure XII.10. The Fortran program

lines start at the 7th column, they have to stop at the 72nd column. This program runs the

Finite element method for structures - A. Legay - Cnam, Paris



XII.3 Fortran language 9

PROGRAM Hel lo

C comments : v a r i a b l e d e c l a r a t i o n s

real a , b , c

integer i

complex w

C Main program

C With Fortran , the i n s t r u c t i o n s s t a r t at the 7th column

c and stop at the 72nd :

C23456−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|

print ∗ , ’ F i r s t ␣Fortran␣program ’

a=3.14

b=2.78

i=3

w=cmplx (1 , 1 )

print ∗ , ’ a␣ i s ␣a␣ r e a l ␣ : ␣ ’ , a

print ∗ , ’ b␣ i s ␣a␣ r e a l ␣ : ␣ ’ , b

print ∗ , ’ i ␣ i s ␣an␣ i n t e g e r ␣ : ␣ ’ , i

print ∗ , ’w␣ i s ␣a␣complex ␣ : ␣ ’ ,w

c=a∗b

print ∗ , ’ a∗b␣=␣ : ␣ ’ , c

c=sq r t ( a )

print ∗ , ’ square ␣ root ␣ o f ␣a␣=␣ : ␣ ’ , c

i=i+1

print ∗ , ’ l e t ’ ’ s ␣add␣1␣ to ␣ i ␣ : ␣ ’ , i

i=i+1

print ∗ , ’ l e t ’ ’ s ␣add␣an␣ other ␣1␣ to ␣ i ␣ : ␣ ’ , i

END

Figure XII.10 – First Fortran program

Finite element method for structures - A. Legay - Cnam, Paris



10 Programming Introduction

same actions as its equivalent one written with Python (Figure XII.1). The first line of the

program starts with the instruction PROGRAM. With Fortran, variables have to be declared

before their use (sizes and types). Here, a and b are declared as real; the i variable is

declared as integer.

The installation of Fortran is relatively simple:

— With the Ubuntu OS: via synaptic, install gfortran

— With the Windows OS: download gfortran from the website

http://gcc.gnu.org/wiki/GFortranBinaries#Windows,

then follow the instructions.

In order to run a Fortran program, it has to be compiled to create an executable file

with the following shell command (by assuming that the file name is hello.f):

gfortran hello.f

A new executable file named a.out is created. This file can be run with the shell command

./a.out in the terminal.

Exercise XII.5 Write a Fortran program which computes the displacement of a clamped-free bending

beam from its length L, its Young modulus E, its second moment of area of the cross section I and the

applied load F .

E, I F L
3

3EI

F

L
�

XII.3.2 Conditions and loops with Fortran

The example of figure XII.11 is the Fortran program of the previous guessing game defined

in the Python section.

The example of figure XII.12 is the Fortran program of the previous multiplication table

program.

Exercise XII.6 Write a Fortran program which computes the Syracuse sequence from a given integer.

This "well-known" sequence can be obtained as the following operation on an arbitrary positive integer:

— If the number is even, divide it by two.

— If the number is odd, triple it and add one.

This operation is repeated on the result. The Syracuse conjecture is that, from any given positive integer,

the sequence always reaches 1. �

XII.3.3 Functions with Fortran

The example of figure XII.13 is the Fortran program of the previous root-finding algorithm

with the bisection method.

Finite element method for structures - A. Legay - Cnam, Paris

http://gcc.gnu.org/wiki/GFortranBinaries#Windows


XII.3 Fortran language 11

PROGRAM Guessing game

integer i , j , k

print ∗ , ’ Guess␣my␣number , ␣you␣have␣3␣ t r i e s . ’

i=6 ! number to d i s c ov e r

j=1 ! t r i e s counter

do while ( j . l e . 3 )

print ∗ , ’Try␣number␣␣ ’ , j

print ∗ , ’ Guess␣a␣number : ’

read ∗ , k

i f ( k . eq . i ) then

print ∗ , ’ Congratu la t ions ’

return ! t h i s ends programme

endif

i f ( k . l t . i ) then

print ∗ , ’My␣number␣ i s ␣ g r e a t e r ␣ than␣you␣ guess ’

endif

i f ( k . gt . i ) then

print ∗ , ’My␣number␣ i s ␣ l e s s ␣ than␣your␣ guess ’

endif

j = j+1

enddo

print ∗ , ’You␣have␣not␣ found␣my␣number , ␣my␣number␣was␣ ’ , i

END

Figure XII.11 – Guessing game with Fortran

Finite element method for structures - A. Legay - Cnam, Paris



12 Programming Introduction

PROGRAM Mu l t i p l i c a t i o n s

implicit none

integer i , k , a , b , c

real rand

print ∗ , ’ Mu l t i p l i c a t i o n ␣ tab l e . ’

k=0 ! Count o f good answers

do i =1 ,20

a=f l o o r (8∗ rand (0))+2

b=f l o o r (8∗ rand (0))+2

print ∗ , a , ’ ∗ ’ ,b , ’ ␣=␣? ’

read ∗ , c

i f ( c . eq . ( a∗b ) ) then

print ∗ , ’ Yes ’

print ∗ , ’ ␣ ’

k=k+1

else

print ∗ , ’No ’

print ∗ , ’ ␣ ’

endif

enddo

print ∗ , ’ number␣ o f ␣good␣answers ␣out␣ o f ␣ 20 : ␣ ’ , k

END

Figure XII.12 – Révision de la table de multiplication en Fortran

Finite element method for structures - A. Legay - Cnam, Paris



XII.3 Fortran language 13

PROGRAM Bi s e c t i o n method

integer i , j , k

double precision a , b , c , ya , yc , mafonction

print ∗ , ’ Root␣ o f ␣ c o s i n e ␣between␣0␣and␣ 3 . ’

a=0.0

b=3.0

j=1 ! Counter o f i t e r a t i o n s

do while ( ( abs ( a−b ) ) . ge . 1 e−6)

j=j+1

ya=myfunction ( a )

c=0.5∗(a+b)

yc=myfunction ( c )

i f ( ( ya∗yc ) . ge . ( 0 . 0 ) ) then

a=c

else

b=c

endif

enddo

print ∗ , ’Number␣ o f ␣ i t e r a t i o n s : ␣ ’ , j

print ∗ , ’ Root␣ o f ␣ the ␣ func t i on : ␣ ’ , c

END

double precision function myfunction (x )

double precision x

myfunction = cos (x )

RETURN

END

Figure XII.13 – Root-finding algorithm with the bisection method using Fortran

Finite element method for structures - A. Legay - Cnam, Paris



14 Programming Introduction

PROGRAM Matr ices

double precision A(3 , 2 ) ,B(2 , 4 ) ,C(3 ,4 )

integer i , j , k

A(1 ,1 )=1 .1 ; A(1 ,2 )=0 .0

A(2 ,1 )=8 .7 ; A(2 ,2 )=0 .0

A(3 ,1 )=0 .0 ; A(3 ,2 )=2 .6

B(1 ,1 )=6 .1 ; B(1 ,2 )=4 .5 ; B(1 ,3 )=0 .0 ; B(1 ,4 )=0 .0

B(2 ,1 )=0 .0 ; B(2 ,2 )=5 .5 ; B(2 ,3 )=3 .7 ; B(2 ,4 )=1 .9

do i =1 ,3

do j =1 ,4

C( i , j )=0.0

do k=1,2

C( i , j )=C( i , j )+A( i , k )∗B(k , j )

enddo

enddo

enddo

do i =1 ,3

print ∗ , (C( i , j ) , j =1 ,4)

enddo

END

Figure XII.14 – Matrix declaration and matrix operations with Fortran

Exercise XII.7 Write a Fortran program that computes the integral of a function by using the rectangle

rule, for instance cos x, from a to b for a given n number of rectangles. �

XII.3.4 Matrix operations with Fortran

There are Fortran matrix operation libraries, but one can program the multiplication of 2

matrices by using 3 loops as it is done in the example shown on figure XII.14. It is possible

to use the sparse matrix storage with Fortran, but it is not used here since we couple Python

and Fortran as it is shown in the next section.

XII.4 Use of Fortran functions within a Python program

A Fortran function can be easily used within a Python program. One can then take advan-

tages of the two languages: program execution speed of Fortran (specially for loops) and

easiness of Python (specially for sparse matrices).

For instance, we can write a Fortran subroutine which computes the product of two

matrices. This subroutine, given on figure XII.15, is saved with the name

lib_multiplication.f. From this Fortran routine, we build up a Python library with the

Finite element method for structures - A. Legay - Cnam, Paris



XII.4 Use of Fortran functions within a Python program 15

SUBROUTINE prodmat (A,B,C, l ,m, n)

integer l ,m, n , i , j , k

real ∗8 A( l ,m) ,B(m, n ) ,C( l , n )

C inputs / outputs f o r Python

Cf2py intent ( in ) A

Cf2py intent ( in ) B

Cf2py intent (out ) C

do i =1, l

do j =1,n

C( i , j )=0.0

do k=1,m

C( i , j )=C( i , j )+A( i , k )∗B(k , j )

enddo

enddo

enddo

return

END

Figure XII.15 – Fortran routine lib_multiplication.f for computing the product of two

matrices

following shell instruction:

f2py3 -c -m lib_multiplication lib_multiplication.f

In the Fortran subroutine promat, the following instructions (which are comments for For-

tran):

Cf2py intent(in) A

Cf2py intent(in) B

Cf2py intent(out) C

are interpreted by f2py in order to build inputs and outputs of the prodmat function of

the created Python library lib_multiplication.cpython-34m.so. This library can then

be used within a Python program as it is done on figure XII.16. In this example, the para-

metrized matrix sizes l, m and n are automatically managed by f2py and do not need to be

given when the routine is called from Python.

The following Python instruction:

print(lib_multiplication.__doc__)

enables to know all the functions contained in the lib_multiplication library.

The following Python instruction:

print(lib_multiplication.prodmat.__doc__)

enables to know all the expected inputs and outputs of the prodmat function.

The screen output of the Python program given on figure XII.16 which calls a Fortran

library is plotted on figure XII.17.

Finite element method for structures - A. Legay - Cnam, Paris



16 Programming Introduction

import s c ipy

import l i b_mu l t i p l i c a t i o n

A=sc ipy . a r ray ( [ [ 1 . 1 , 0 . 0 ] ,

[ 8 . 7 , 0 . 0 ] ,

[ 0 . 0 , 2 . 6 ] ] )

B=sc ipy . a r ray ( [ [ 6 . 1 , 4 . 5 , 0 . 0 , 0 . 0 ] ,

[ 0 . 0 , 5 . 5 , 3 . 7 , 1 . 9 ] ] )

print ( l i b_mu l t i p l i c a t i o n .__doc__)

print ( l i b_mu l t i p l i c a t i o n . prodmat .__doc__)

C=l i b_mu l t i p l i c a t i o n . prodmat (A,B)

print (C)

Figure XII.16 – Use of a Fortran library within a Python program

This module ’lib_multiplication’ is auto-generated with f2py (version:2).

Functions:

c = prodmat(a,b,l=shape(a,0),m=shape(a,1),n=shape(b,1))

c = prodmat(a,b,[l,m,n])

Wrapper for ‘‘prodmat‘‘.

Parameters

----------

a : input rank-2 array(’d’) with bounds (l,m)

b : input rank-2 array(’d’) with bounds (m,n)

Other Parameters

----------------

l : input int, optional

Default: shape(a,0)

m : input int, optional

Default: shape(a,1)

n : input int, optional

Default: shape(b,1)

Returns

-------

c : rank-2 array(’d’) with bounds (l,n)

[[ 6.71 4.95 0. 0. ]

[ 53.07 39.15 0. 0. ]

[ 0. 14.3 9.62 4.94]]

Figure XII.17 – Screen output of the use of a Fortran library within a Python program

Finite element method for structures - A. Legay - Cnam, Paris


	XII Programming Introduction
	XII.1 Programming language
	XII.2 Python language
	XII.2.1 Python basis and installation
	XII.2.2 Conditions and loops with Python
	XII.2.3 Functions with Python
	XII.2.4 Matrix operations with Python

	XII.3 Fortran language
	XII.3.1 Fortran basis and installation
	XII.3.2 Conditions and loops with Fortran
	XII.3.3 Functions with Fortran
	XII.3.4 Matrix operations with Fortran

	XII.4 Use of Fortran functions within a Python program


